Shortwave radiation
Governing equations
The downwelling, \(I_i^{\downarrow}\) [Wm\(^{-2}\)], and upwelling, \(I_{i+1}^{\uparrow}\) [Wm\(^{-2}\)], scattered radiation fluxes at \(i\)-th and
\((i+1)\)-th level are given as
\[\begin{eqnarray}
I_{i }^{\downarrow} & = & I_{i+1 }^{\downarrow} \left[ \mathcal{\tau}_{d,i+1} + (1 - \tau_{d,i+1})\tau_{\ell,i+1}\right]
+ I_{i }^{\uparrow} (1 - \tau_{d,i+1})\rho_{\ell,i+1} \nonumber \\
\label{eqn_sw_dn}
& & + I_{sky,b}^{\downarrow} T_{b,i+1} (1 - \tau_{b,i+1})\tau_{\ell,i+1} \\
I_{i+1}^{\uparrow} & = & I_{i }^{\uparrow} \left[ \tau_{d,i+1} + (1 - \tau_{d,i+1})\tau_{\ell,i+1}\right]
+ I_{i+1 }^{\downarrow} (1 - \tau_{d,i+1})\rho_{\ell,i+1} \nonumber \\
& & + I_{sky,b}^{\downarrow} T_{b,i+1} (1 - \tau_{b,i+1})\rho_{\ell,i+1}
\label{eqn_sw_up}
\end{eqnarray}\]
where
\(\tau_{d,i+1}\) [-] and \(\tau_{b,i+1}\) [-] are the diffuse and direct beam transmittances through \((i+1)\)-th layer,
\(\rho_{\ell,i+1}\) [-] is the leaf reflectance of \((i+1)\)-th layer,
\(I_{sky,b}\) [Wm\(^{-2}\)] is the direct beam radiation incident on the top of the canopy, and
\(T_{b,i+1}\) [-] is the fraction of direct beam radiation that is not intercepted through
the cumulative leaf area above the \((i+1)\)-th layer.
Transmittance
The direct beam transmittance through the \((i+1)\)-th layer with leaf area index \(\Delta L_{i+1}\) is
\[\begin{equation}
\tau_{d,i+1} = 2 \int_{0}^{\pi/2} \exp \left[ - \frac{G(Z_i)\Omega}{\cos (Z_i)} \Delta L_{i+1} \right] \sin (Z_i) \cos (Z_i) dZ
\end{equation}\]
where
\(Z\) is the sky zenith angle and
\(\Omega\) is the leaf clumping factor.
The Ross-Goudriann function, \(G(Z)\), is given by
\begin{equation}
\label{eqn_rg_function}
G(Z) = \phi_1 + \phi_2 \cos(Z)
\end{equation}
where \(\phi_1 = 0.5 -0.633\chi_\ell - 0.33\chi_\ell^2\) and
\(\phi_2 = 0.877 (1 - 2\phi_1\)). The leaf departure angle from from spherical orientation, \(\chi_\ell\),
in restricted to \(-0.4 \le \chi_\ell \le 0.6\). The equation \eqref{eqn_rg_function} is numerically approximation
for nine sky zones as
\begin{equation}
\tau_{d,i+1} = 2 \sum_{i=1}^{9} \exp \left[ - \frac{G(Z_i)\Omega}{\cos (Z_i)} \Delta L_{i+1} \right] \sin (Z_i) \cos (Z_i) \Delta Z_i
\end{equation}
with \(\Delta Z_i = \pi/18\).
The diffuse beam transmittance through the \((i+1)\)-th layer is
\begin{equation}
\tau_{b,i+1} = \exp \left( -K_{b,i+1} \Omega \Delta L_{i+1} \right)
\end{equation}
%
where \(K_{b,i+1} = G(Z)/\cos(Z)\) is the extinction coefficient for the direct beam.
The fraction of direct been that is not intercepted through the cumulative leaf area above
the \((i+1)\)-th layer is computed as
\[\begin{equation}
T_{b,i+1} = \prod_{j=i+1}^N \exp \left( -K_{b,j} \Omega_j \Delta L_j \right)
\end{equation}\]
Linear system
The equation \eqref{eqn_sw_dn}-\eqref{eqn_sw_up} can be written as a system of linear equations
\[\begin{eqnarray}
\label{eqn_sw_linear_system_up}
-a_i I_i^{\uparrow} + I_i^\downarrow - b_iI_{i+1}^\uparrow &=& d_i \\
\label{eqn_sw_linear_system_dn}
-e_{i+1}I_i^\downarrow + I_{i+1}^\uparrow - f_{i+1}I_{i+1}^\downarrow &=& c_{i+1}
\end{eqnarray}\]
where
\[\begin{eqnarray}
a_i &=& f_{i+1} = (1-\tau_{d,i+1})\rho_{\ell,i+1} -
\frac{[\tau_{d,i+1} + (1 - \tau_{d,i+1}) \tau_{\ell,i+1} ]^2}
{(1 - \tau_{d,i+1})/\rho_{\ell,i+1}} \\
b_i &=& e_{i+1} = \frac{\tau_{d,i+1} + (1 - \tau_{d,i+1})\tau_{\ell,i+1}}
{(1 - \tau_{d,i+1}) \rho_{\ell,i+1}} \\
c_i &=& I_{sky,b}^\downarrow T_{b,i } (1 - \tau_{b,i }) (\rho_{\ell,i } - \tau_{\ell,i. } e_i)\\
d_i &=& I_{sky,b}^\downarrow T_{b,i+1} (1 - \tau_{b,i+1}) (\tau_{\ell,i+1} - \rho_{\ell,i+1} b_i)
\end{eqnarray}\]
The boundary conditions
for the downwelling radiation at the bottom layer, \(i=0\),
and the upwelling radiation at the top layer, \(i=N\), are given by
\[\begin{eqnarray}
c_0 &=& \rho_{gb} I_{sky,b}^\downarrow T_{b,0} \\
f_0 &=& \rho_{gd} \\
d_N &=& I_{sky,d}^\downarrow
\end{eqnarray}\]
where
\(\rho_{gb}\) [-] is the surface albedo for beam radiation,
\(\rho_{gd}\) [-] is the surface albedo for diffuse radiation, and
\(I_{sky,d}\) [Wm\(^{-2}\)] is the diffuse radiation incident on the top of the canopy.
The linear system of equations given in equation \eqref{eqn_sw_linear_system_up}-\eqref{eqn_sw_linear_system_dn}
can be written as
\[\begin{align}
\begin{bmatrix}
1 & -\rho_{gd} & & & & & & \\[.6em]
-a_0 & 1 & -b_0 & & & & & \\[.6em]
& -e_1 & 1 & -f_1 & & & & \\[.6em]
& & -a_1 & 1 & -b_1 & & & \\[.6em]
& & & \ddots & \ddots & \ddots & & \\[.6em]
& & & & \ddots & \ddots & \ddots & \\[.6em]
& & & & & -e_N & 1 & -f_N \\[.6em]
& & & & & & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\hspace{5pt} I_0^\uparrow \hspace{5pt} \\[.5em]
I_0^\downarrow \\[.5em]
I_1^\uparrow \\[.5em]
I_1^\downarrow \\[.5em]
\vdots \\[.5em]
\vdots \\[.5em]
I_N^\uparrow \\[.5em]
I_N^\downarrow
\end{bmatrix}
=
\begin{bmatrix}
\hspace{5pt} c_0 \hspace{5pt} \\[.6em]
d_0 \\[.6em]
c_1 \\[.6em]
d_1 \\[.6em]
\vdots \\[.6em]
\vdots \\[.6em]
c_N \\[.6em]
d_N
\end{bmatrix}
\end{align}\]
Absorbed radiative fluxes
The diffuse, \(\overrightarrow{I}_{cd,i}\) [Wm\(_{ground}^{-2}\)], and
direct beam, \(\overrightarrow{I}_{cb,i}\) [Wm\(_{ground}^{-2}\)], radiation absorbed by the
\(i\)-th canopy layer is
\[\begin{eqnarray}
\overrightarrow{I}_{cd,i} &=& \left( I_i^\downarrow + I_{i-1}^\uparrow \right) (1 - \tau_{d,i})(1 - \omega_{\ell,i}) \\
\overrightarrow{I}_{cb,i} &=& I_{sky,b}^\downarrow T_{b,i}(1 - \tau_{b,i})(1 - \omega_{\ell,i})
\end{eqnarray}\]
The radiation absorbed at the ground, \(\overrightarrow{I}_{g}\) [Wm\(_{ground}^{-2}\)], is
\[\begin{equation}
\overrightarrow{I}_g = \left( 1 - \rho_{gd} \right) I_0^\downarrow + \left( 1 - \rho_{gb} \right) I_{sky,b}^\downarrow T_{b,0}
\end{equation}\]
It is assumed that the shaded leaves only absorb diffuse radiation, while sunlit
leaves receive direct and diffuse radiations. The absorbed radiation fluxes by
shaded, \(\overrightarrow{I}_{\ell sha, i}\) [Wm\(_{leaf}^{-2}\)], and
sunlit, \(\overrightarrow{I}_{\ell sun, i}\) [Wm\(_{leaf}^{-2}\)], is given as
\[\begin{eqnarray}
\overrightarrow{I}_{\ell sha, i} &=& \frac{I_{cd,i}}{\Delta L_i} \\[0.5em]
\overrightarrow{I}_{\ell sun, i} &=& \overrightarrow{I}_{\ell sha, i}
+ \frac{\overrightarrow{I}_{cb,i}}{f_{sun,i} \Delta L_i}
\end{eqnarray}\]
where \(f_{sun}\) [-] is the fraction of sunlit leaves at \(i\)-th layer.
The absorbed canopy fluxes for
shaded, \(\overrightarrow{I}_{cSha}\) [Wm\(_{ground}^{-2}\)], and
sunlit, \(\overrightarrow{I}_{cSun}\) [Wm\(_{ground}^{-2}\)], are
\[\begin{eqnarray}
\overrightarrow{I}_{cSha} &=& \sum_{i=1}^N \overrightarrow{I}_{\ell sha, i} ( 1 - f_{sun}) \Delta L_i
= \sum_{i=1}^N I_{cd,i} (1 - f_{sun})\\
\overrightarrow{I}_{cSun} &=& \sum_{i=1}^N \overrightarrow{I}_{\ell sun, i} f_{sun} \Delta L_i
= \sum_{i=1}^N \left( \overrightarrow{I}_{cd, i} f_{sun} + \overrightarrow{I}_{cb,i}\right)
\end{eqnarray}\]