Skip to content

Roughness sublayer model

Wind profile above canopy

The wind profile, \(u\), above canopy the is given as

\[\begin{equation} \label{eqn_du_dz_above} \frac{\kappa (z-d)}{u_* }\frac{\partial u }{\partial z} = \Phi_m\left( z \right) \end{equation}\]

where \(\Phi_m\) [-] is an effective similarity function that is given by

\[\begin{equation} \label{eqn_phi_m} \Phi_m(z) = \phi_m \left( \frac{z-d}{L_{MO}}\right) \hat{\phi}_m \left( \frac{z-d}{l_m /\beta }\right) \end{equation}\]
\[\begin{equation} u(z) = \frac{u_*}{\kappa} \left[ \ln \left( \frac{z - d}{z_{0m}} \right) - \psi_m\left( \frac{z - d}{L_{MO}} \right) + \psi_m\left( \frac{z_{0m}}{L_{MO}} \right) + \hat{\psi}_m(z) \right] \end{equation}\]

where

\[\begin{equation} \label{eqn:wind_profile_rsl_above} \hat{\psi}_m = \int_z^\infty \phi_m \left( \frac{z' - d}{L_{MO}} \right) \left[ 1 - \hat{\phi}_m \left(\frac{z' -d }{l_m/\beta} \right) \right] \frac{dz'}{z' - d} \end{equation}\]

Given equation \eqref{eqn:wind_profile_rsl_above}, the wind at canopy height is given by

\[\begin{equation} \label{eqn:wind_at_hc} u_{hc} = \frac{u_*}{\beta} \end{equation}\]
\[\begin{eqnarray} u(z) &=& \frac{u_*}{\kappa} \left[ \ln \left( \frac{z - d}{h_c - d} \right) - \psi_m\left( \frac{z - d}{L_{MO}} \right) + \psi_m\left( \frac{h_c - d}{L_{MO}} \right) \right. \nonumber \\ & & \label{eqn_u_with_hc} \left. + \hat{\psi_m}(z) - \hat{\psi_m}(h_c) + \frac{\kappa}{\beta} \right] \end{eqnarray}\]

Wind profile within canopy

HF-20071 assumed an exponential wind profile within the canopy that is given as

\[\begin{equation} \label{eqn_du_dz_within} u(z) = u(h_c)\exp\left( \frac{z - h_c}{l_m/\beta} \right) \end{equation}\]

and the derivative of the wind profile is

\[\begin{eqnarray} \frac{\partial u(z)}{\partial z} &=& \frac{u(h_c)}{l_m/\beta} \exp\left( \frac{z - h_c}{l_m/\beta} \right) \nonumber \\ &=& \frac{u(z)}{l_m/\beta} \end{eqnarray}\]
\[\begin{equation} h_c - d = \frac{l_m}{2\beta} = \beta^2 L_c \end{equation}\]

Enforcing the continuity of derivative of wind at canopy height (\(h_c\)) from equation \eqref{eqn_du_dz_above} and \eqref{eqn_du_dz_within} leads to

\[\begin{eqnarray} \frac{u_*}{\kappa (h_c - d)} \Phi_m(h_c) &=& \frac{u(h_c)}{l_m/\beta} \nonumber \\ \Phi_m(h_c) &=& \frac{u(h_c)}{u_*} \times \frac{\kappa (h_c - d)}{l_m/\beta} \nonumber \\ \Phi_m(h_c) &=& \frac{1}{\beta} \times \frac{\kappa l_m/(2\beta) }{l_m/\beta} \nonumber \\ \label{eqn_phi_m_at_hc} \Phi_m(h_c) &=& \frac{\kappa l_m}{2\beta} \end{eqnarray}\]

Wind similarity function

For the above canopy wind profile, HF-20071 assumed the similarity function for momentum to be

\[\begin{equation} \hat{\phi}_m \left( \frac{z-d}{l_m /\beta} \right) = 1 - c_1 \exp \left[ -c_2 \left( \frac{z-d}{l_m/\beta} \right)\right] \end{equation}\]

where \(c_1\) and \(c_2 (= 0.5)\) are parameters. The parameter \(c_1\) is found by evaluating \(\hat{\phi}_m\) at \(z=h_c\) that gives

\[\begin{eqnarray} \hat{\phi}_m \left( \frac{h_c - d}{l_m /\beta} \right) &=& 1 - c_1 \exp \left[ -c_2 \left( \frac{h_c-d}{l_m/\beta} \right)\right] \nonumber \\ &=& 1 - c_1 \exp \left[ -c_2 \left( \frac{l_m/(2\beta)}{l_m/\beta} \right)\right] \nonumber \\ &=& 1 - c_1 \exp \left( -0.5c_2\right) \nonumber \\ c_1 &=& \left[ 1 - \hat{\phi}_m \left( \frac{h_c - d}{l_m /\beta} \right)\right] \exp (0.5c_2) \end{eqnarray}\]

In order to compute \(c_1\) from the above equation, an expression of \(\hat{\phi}_m\) at \(z = h_c\) is needed, which is obtained using equation \eqref{eqn_phi_m} at \(z = h_c\) and equation \eqref{eqn_phi_m_at_hc} as

\[\begin{equation} \hat{\phi}_m \left( \frac{h_c-d}{l_m/\beta}\right) = \frac{\kappa}{2\beta} \phi_m^{-1} \left( \frac{h_c-d}{L_{MO}}\right) \end{equation}\]

Wind beta term

The critical unknown in the roughness sublayer parameterization is \(\beta\). HF-20071 derived an expression for \(\beta\) as

\[\begin{equation} \beta \phi_m \left( \frac{h_c - d}{L_{MO}} \right) = \beta_N \end{equation}\]

or

\[\begin{equation} \label{eqn_beta} \beta \phi_m \left( \frac{\beta^3 L_c}{L_{MO}} \right) = \beta_N \end{equation}\]

The solution of equation \eqref{eqn_beta} depends on if \(\phi\) is evaluated for unstable or stable condition and leads to following equations

\[\begin{eqnarray} (\beta^2)^2 + 16 \frac{L_c}{L_{MO}}\beta^4\beta^2 - \beta_N^4 &=& 0 L_{MO} < 0 \\ 5 \frac{L_c}{L_{MO}} \beta^3 + \beta - \beta_N &=& 0 L_{MO} \geq 0 \end{eqnarray}\]

The correct solution is the larger root for the sable condition, while the unstable case has only one real root.

Temperature profile

Similar to the equations for wind profiles, the equations describing profiles of heat (or scalar) above and within the canopy are given below.

\[\begin{eqnarray} \label{eqn_theta_du_dz_1} \frac{\kappa (z-d)}{\theta_*}\frac{\partial \theta}{\partial z} &=& \Phi_c\left( z \right) \\ \Phi_c(z) &=& \phi_c \left( \frac{z-d}{L_{MO}}\right) \hat{\phi}_c \left( \frac{z-d}{l_m /\beta }\right) \\ \theta(z) - \theta_s &=& \frac{\theta_*}{\kappa} \left[ \ln \left( \frac{z - d}{z_{0c}} \right) - \psi_m\left( \frac{z - d}{L_{MO}} \right) + \psi_m\left( \frac{z_{0c}}{L_{MO}} \right) + \hat{\psi}_c(z) \right] \end{eqnarray}\]

where

\[\begin{equation} \hat{\psi}_c = \int_z^\infty \phi_c \left( \frac{z' - d}{L_{MO}} \right) \left[ 1 - \hat{\phi}_c \left(\frac{z' -d }{l_m/\beta} \right) \right] \frac{dz'}{z' - d} \end{equation}\]

An exponential profile of air temperature is assumed within the canopy that is given by \begin{equation} \theta(z) - \theta_s = (\theta(h_c) - \theta_s) \exp\left[ \frac{f(z - h_c)}{l_m/\beta} \right] \end{equation}

where parameter \(f\) relates the length scale of heat (scalar) to that of momentum and is given by

\[\begin{equation} f = \frac{1}{2} (1 + 4r_c\text{Pr})^{1/2} - \frac{1}{2} \end{equation}\]

and

\[\begin{equation} \text{Pr} = 0.5 + 0.3\tanh(2L_c/L_{MO}) \end{equation}\]

The derivatives of the profile within the canopy is

\[\begin{equation} \label{eqn_theta_du_dz_2} \frac{\partial \theta (z)}{\partial z} = \frac{(\theta(h_c) - \theta_s) f}{l_m/\beta}\exp\left[ \frac{f(z - h_c)}{l_m/\beta} \right] \end{equation}\]

Enforcing continuity of derivative at \(z = h_c\) using equation \eqref{eqn_theta_du_dz_1} and \eqref{eqn_theta_du_dz_2}

\[\begin{equation} \left. \frac{\partial \theta}{\partial z}\right|_{z=h_c} = \frac{\theta_*}{\kappa (h_c - d)}\Phi_c(h_c) = \frac{f[\theta(h_c) -\theta_s]}{l_m/\beta} \end{equation}\]

so that

\[\begin{equation} \frac{\theta(h_c) - \theta_s}{\theta_*} = \frac{\text{Pr}}{f\beta} \end{equation}\]

An equation similar to equation \eqref{eqn_u_with_hc} can be written for \(\theta\)

\[\begin{eqnarray} \theta(z) - \theta_s &=& \frac{\theta_*}{\kappa} \left[ \ln \left( \frac{z - d}{h_c - d} \right) - \psi_c\left( \frac{z - d}{L_{MO}} \right) + \psi_c\left( \frac{h_c - d}{L_{MO}} \right) \right. \nonumber \\ \label{eqn_q_with_hc} & & \left. + \hat{\psi_c}(z) - \hat{\psi_c}(h_c) + \frac{\kappa\text{Pr}}{f\beta} \right] \end{eqnarray}\]

For the above canopy wind profile, HF-20071 assumed the similarity function for momentum to be

\[\begin{equation} \hat{\phi}_c \left( \frac{z-d}{l_m /\beta} \right) = 1 - c_1 \exp \left[ -c_2 \left( \frac{z-d}{l_m/\beta} \right)\right] \end{equation}\]
\[\begin{eqnarray} c_1 &=& \left[ 1 - \hat{\phi}_c \left( \frac{h_c - d}{l_m /\beta} \right)\right] \exp (0.5c_2) \\ \hat{\phi}_c \left( \frac{z-d}{l_m/\beta}\right) &=& \frac{\kappa \text{Pr}}{2\beta} \phi_c^{-1} \left( \frac{z-d}{L_{MO}}\right) \end{eqnarray}\]

Aerodynamic conductance

The aerodynamic conductances for scalar, \(g_{ac}\), is given as

\[\begin{equation} \frac{1}{g_{ac}} = \int_{z_1}^{z_2} \frac{dz}{\rho_m K_c} \end{equation}\]

where \(K_c\) is the eddy diffusivity for scalar based on K-theory. The aerodynamic conductance above canopy is

\begin{equation} g_{am,i+1/2} = \rho_m \kappa^2 u_* \left[ \ln \left( \frac{z_{i+1} - d}{z_i - d} \right) + \psi_{i+1} - \psi_i \right]^{-1} \end{equation} where

\[\begin{equation} \psi_i = - \psi_c\left( \frac{z_i - d}{L_{MO}} \right) + \psi_c\left( \frac{h_c - d}{L_{MO}} \right) + \hat{\psi_c}(z_i) - \hat{\psi_c}(h_c) \end{equation}\]

The aerodynamic conductance within canopy is

\[\begin{equation} g_{ac,i+1/2} = \frac{\rho \beta u_*}{\text{Pr}} \left[ \exp \left( \frac{-(z_{i+1}-h_c)}{l_m/\beta} \right) - \left( \frac{-(z_i-h_c)}{l_m/\beta} \right) \right]^{-1} \end{equation}\]

  1. Ian N Harman and John J Finnigan. A simple unified theory for flow in the canopy and roughness sublayer. Boundary-layer meteorology, 123:339–363, 2007.