Multi layer canopy
Governing equations
The equations for the time evolution of
air temperature, \(\theta\), and
water vapor, \(q\),
sunlit leaf temperature, \(T_{\ell sun}\), and
shaded leaf temperature, \(T_{\ell shd}\),
in a MLCM is given by
\[\begin{eqnarray}
\rho_mc_p
\left(\frac{\partial\theta}{\partial t}\right) &=&
c_p \nabla \cdot \left( g_{a} \nabla \theta \right)
+ \frac{Q_{\theta sun,i} \Delta L_{sun,i}}{\Delta z_i}
+ \frac{Q_{\theta shd,i} \Delta L_{shd,i}}{\Delta z_i} \label{eqn_mlc_tair}
+ S_\theta \\
\rho_m
\left( \frac{\partial q}{\partial t} \right) &=&
\nabla \cdot \left( g_{a} \nabla q \right)
+ \frac{Q_{qsun,i} \Delta L_{sun,i}}{\Delta z_i}
+ \frac{Q_{qshd,i} \Delta L_{shd,i}}{\Delta z_i} \label{eqn_mlc_qair}
+ S_q \\
c_{\ell}
\left( \frac{\partial T_{\ell sun}}{\partial t} \right) &=&
\text{R}_{n,sun} - Q_{\theta sun} - \lambda Q_{qsun} + S_{\ell sun} \label{eqn_mlc_tsun} \\
c_{\ell}
\left( \frac{\partial T_{\ell shd}}{\partial t} \right) &=&
\text{R}_{n,shd} - Q_{\theta shd} - \lambda Q_{qshd} + S_{\ell shd} \label{eqn_mlc_tshd}
\end{eqnarray}\]
where
\(\rho_m\) is density of air,
\(\lambda\) is latent heat of vaporization for water,
\(c_p\) is specific heat capacity of air,
\(c_{\ell}\) is specific heat capacity of leaf,
\(g_{a}\) is atmospheric conductance,
\(\Delta L_{sun}\) is the leaf area index of the sunlit leaf,
\(\Delta L_{shd}\) is the leaf area index of the shaded leaf,
\(Q_{\theta sun}\) is the heat source from the sunlit leaf to the canopy air,
\(Q_{\theta shd}\) is the heat source from the shaded leaf to the canopy air,
\(Q_{qsun}\) is the water vapor source from the sunlit leaf the canopy air,
\(Q_{qsun}\) is the water vapor source from the shaded leaf the canopy air,
\(\text{Rn}_{sun}\) is the net shortwave and longwave radiation absorbed by the sunlit leaf, and
\(\text{Rn}_{shd}\) is the net shortwave and longwave radiation absorbed by the shaded leaf.
The source of heat and water vapor for sunlit and shaded leaves at the \(i\)-th layer are given by
\[\begin{eqnarray}
Q_{\theta sun} &=& 2c_p(T_{\ell sun} - \theta_i)g_{bh} \\
Q_{\theta shd} &=& 2c_p(T_{\ell shd} - \theta_i)g_{bh}\\
Q_{qsun} &=& (q_{sat}(T_{\ell sun}) - q_i) g_{\ell sun} \\
Q_{qshd} &=& (q_{sat}(T_{\ell shd}) - q_i) g_{\ell shd}
\end{eqnarray}\]
where
\(g_{bh,i}\) is the boundary layer conductance for heat,
\(g_{bw,i}\) is the boundary layer conductance for water vapor,
\(g_{\ell sun,i}\) is the total leaf conductance for the sunlit leaf, and
\(g_{\ell shd,i}\) is the total leaf conductance for the shaded leaf.
The leaf conductances are given as
\[\begin{eqnarray}
g_{\ell sun} &=& \left(\frac{1}{g_{bw}^{-1} + g_{sw,sun}^{-1}}\right) f_{dry} + g_{bw} f_{wet}\\
g_{\ell shd} &=& \left(\frac{1}{g_{bw}^{-1} + g_{sw,shd}^{-1}}\right) f_{dry} + g_{bw} f_{wet}
\end{eqnarray}\]
where
\(g_{sw,sun}\) is the stomatal conductance for the sunlit leaf, and
\(g_{sw,shd}\) is the stomatal conductance for the shaded leaf.
The net radiation absorbed by sunlit and shaded leaf are given by
\[\begin{eqnarray}
\label{eqn_rn}
\text{Rn}_{sun} &=& \vec{I}^{d}_{sun} + \vec{I}^{b}_{sun} + \vec{L}_{sun}\\
\text{Rn}_{shd} &=& \vec{I}^{d}_{shd} + \vec{L}_{shd} \label{eqn:net_}
\end{eqnarray}\]
where
\(\vec{I}^{d}\) is absorbed diffuse radiation,
\(\vec{I}^{b}\) is absorbed beam radiation, and
\(\vec{L}\) is absorbed longwave radiation.
The finite volume and implicit time discretization of equation \eqref{eqn_mlc_tair}-\eqref{eqn_mlc_tshd} leads to the following equations
for the \(i\)-th layer can be written as
\[\begin{eqnarray}
\begin{bmatrix}
\alpha_{1,1} & {\alpha_{1,2}} & {\alpha_{1,3}} & \alpha_{1,4} & \alpha_{1,5} & \alpha_{0,6} & {\alpha_{1,7}} & {\alpha_{1,8}}\\
0 & 0 & 0 & {\alpha_{2,4}} & {\alpha_{2,5}} & {\alpha_{2,6}} & {\alpha_{2,7}} & {\alpha_{2,8}}\\
0 & {\alpha_{3,2}} & 0 & 0 & {\alpha_{3,5}} & 0 & {\alpha_{3,7}} & 0 \\
0 & {\alpha_{4,2}} & 0 & 0 & {\alpha_{4,5}} & 0 & 0 & {\alpha_{4,8}}\\
\end{bmatrix}
\begin{bmatrix}
\theta_{i-1}^{t+1} \\
\theta_{i }^{t+1} \\
\theta_{i+1}^{t+1} \\
q_{i-1}^{t+1} \\
q_{i }^{t+1} \\
q_{i+1}^{t+1} \\
T_{lsun,i}^{t+1} \\
T_{lshd,i}^{t+1}
\end{bmatrix}
=
\begin{bmatrix}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{bmatrix}
\label{eqn_mlc_matrix}
\end{eqnarray}\]
Air temperature equation
The discretized equation \ref{eqn_mlc_tair} at an internal vertical layer (i.e. \(0<i<N\))
\[\begin{eqnarray}
\frac{\rho_m }{\Delta t}
\left(\theta_i^{t+1} - \theta_i^{t}\right) &=&
+ g_{a,i+\frac{1}{2}} \left(\frac{ {\theta_{i+1}^{t+1} - \theta_{i }^{t+1}} } {z^c_{i+1} - z^c_{i }}\right)
- g_{a,i-\frac{1}{2}}\left(\frac{ {\theta_{i }^{t+1} - \theta_{i-1}^{t+1}}}{ z^c_{i } - z^c_{i-1}} \right) \nonumber \\
& & + 2 \left(T_{\ell sun,i}^{t+1} - \theta_i^{t+1}\right) \left( \frac{g_{bh,i}\Delta L_{sun,i}}{\Delta z_i} \right) \nonumber \\
& & + 2 \left(T_{\ell shd,i}^{t+1} - \theta_i^{t+1}\right) \left( \frac{g_{bh,i}\Delta L_{shd,i}}{\Delta z_i} \right)
\end{eqnarray}\]
The non-zero coefficients \(\alpha_{i=1,*}\) of equation \eqref{eqn_mlc_matrix} for \(0<i<N\) are thus given as
\[\begin{eqnarray}
\label{eqn_atemp_terms}
\alpha_{1,1} &=& -\left(\dfrac{g_{a,i-\frac{1}{2}}^{t+1}}{\Delta z^c_{i,i-1}} \right) \\
\alpha_{1,2} &=& \left(\dfrac{\rho_m}{\Delta t}\right)
+ \left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1} }{\Delta z^c_{i+1,i}} \right)
+ \left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1} }{\Delta z^c_{i+1,i}} \right) \nonumber \\
& &
+ \frac{2 g_{bh,i}^{t+1} \left(\Delta L_{sun,i} + \Delta L_{shd,i}\right)}{\Delta z_i} \\
\alpha_{1,3} &=& -\left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1}}{\Delta z^c_{i+1,i}} \right)\\
\alpha_{1,7} &=& - \frac{2 g_{bh,i}^{t+1} \Delta L_{sun,i}}{\Delta z_i}\\
\alpha_{1,8} &=& - \frac{2 g_{bh,i}^{t+1} \Delta L_{shd,i}}{\Delta z_i} \\
\beta_{1} &=& \left(\dfrac{\rho_m}{\Delta t}\right) \theta_i^{t+1}
\end{eqnarray}\]
For the top vertical layer \(i = N\), the coefficients \(\alpha_{i=1,*}\) remain same as terms in equation \eqref{eqn_atemp_terms} same except
\[\begin{eqnarray}
\label{eqn_atemp_terms_top}
\beta_{1} &=& \left(\dfrac{\rho_m}{\Delta t}\right) \theta_i^{t+1} + \left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1}}{\Delta z^c_{i+1,i}} \right) \theta_{ref}^{t+1}
\end{eqnarray}\]
where \(\theta_{ref}^{n+1}\) is prescribed atmospheric temperature.
For \(i = 0\), the energy balance for the soil surface, \(\text{Rn}_0\), is given by
\[\begin{eqnarray}
\label{eqn_soil_bc_air_heat}
\text{Rn}_0 &=& c_p(T_0^{n+1} - \theta_1^{n+1})g_{a,0}
\nonumber \\
& & + \lambda \left\{
h_{s0} q_{sat}(T_0^{n+1}) - q_1^{n+1}
\right\}g_{s0} \nonumber \\
& & + \frac{\kappa_{1}}{\Delta z_{1/2}} \left( T_0^{n+1} - T_{-1}^n\right) \nonumber \\
&=& c_p(T_0^{n+1} - \theta_{1}^{n+1})g_{a,0} \nonumber \\
& & +
\lambda
\left\{
h_{s0} \left[ q_{sat}(T_0^{n}) + s_0\left( T_0^{n+1} - T_0^n\right)\right] - q_1^{n+1}
\right\}g_{s0}\nonumber \\
& & + \frac{\kappa_{1}}{\Delta z_{1/2}} \left( T_0^{n+1} - T_{-1}^n\right)
\end{eqnarray}\]
where
\(\theta_0^{n+1} = T_0^{n+1}\) is the soil surface temperature,
\(T_{-1}^{n}\) is the soil temperature of the first soil layer,
and
\(z_{1/2}\) is the distance between the soil surface and centroid of first soil layer.
The non-zero coefficients \(\alpha_{1,*}\) for \(i = 0\) are thus given as
\[\begin{eqnarray}
\label{eqn_atemp_terms_soil}
\alpha_{1,2} &=& \left( c_p g_{a,0} + \lambda h_{s0} g_{s0} s_{0} + \frac{\kappa_{1}}{\Delta z_{1/2}} \right) \\
\alpha_{1,3} &=& - c_p g_{a,0} \\
\alpha_{1,6} &=& - \lambda g_{s,0} \\
\beta_{1} &=& \text{Rn}_0 - \lambda h_{s0} \left[ q_{sat}(T_0^{n}) - s_0T_0^n\right] g_{s0} + \frac{\kappa_{1}}{\Delta z_{1/2}} T_{-1}^n
\end{eqnarray}\]
Air vapor pressure equation
The discretized equation \ref{eqn_mlc_qair} at an internal vertical layer (i.e. \(0<i<N\))
\[\begin{eqnarray}
\frac{\rho_m}{\Delta t}
\left(q_i^{t+1} - q_i^t \right) &=&
+ g_{a,i+\frac{1}{2}} \left(\frac{ {q_{i+1}^{t+1} - q_{i }^{t+1}} } {z^c_{i+1} - z^c_{i }}\right)
- g_{a,i-\frac{1}{2}}\left(\frac{ {q_{i }^{t+1} - q_{i-1}^{t+1}}}{ z^c_{i } - z^c_{i+1}} \right) \nonumber \\
& & + \left[q_{sat, \ell sun,i}^{t+1} - q_i^{t+1}\right] \left( \frac{ g_{\ell sun,i}\Delta L_{sun,i}} {\Delta z_i} \right)\nonumber \\
& & + \left[q_{sat, \ell sha,i}^{t+1} - q_i^{t+1}\right] \left( \frac{ g_{\ell sun,i}\Delta L_{sun,i}} {\Delta z_i} \right) \nonumber \\
&=&
+ g_{a,i+\frac{1}{2}} \left(\frac{ {q_{i+1}^{t+1} - q_{i }^{t+1}} } {z^c_{i+1} - z^c_{i }}\right)
- g_{a,i-\frac{1}{2}}\left(\frac{ {q_{i }^{t+1} - q_{i-1}^{t+1}}}{ z^c_{i } - z^c_{i+1}} \right) \nonumber \\
& & + \left[ q_{sat, \ell sun,i}^{t} + s_{sun,i} \left( T_{\ell,sun}^{n+1} - T_{\ell, sun}^n \right) - q_i^{t+1}\right] \left( \frac{ g_{\ell sun,i}\Delta L_{sun,i}} {\Delta z_i} \right)\nonumber \\
& & + \left[ q_{sat, \ell sha,i}^{t} + s_{sha,i} \left( T_{\ell,sha}^{n+1} - T_{\ell, sha}^n \right) - q_i^{t+1}\right] \left( \frac{ g_{\ell sun,i}\Delta L_{sun,i}} {\Delta z_i} \right)
\end{eqnarray}\]
The non-zero coefficients \(\alpha_{i=2,*}\) of equation \eqref{eqn_mlc_matrix} for \(0<i<N\) are thus given as
\[\begin{eqnarray}
\label{eqn_avapor_terms}
\alpha_{2,4} &=& -\left(\dfrac{g_{a,i-\frac{1}{2}}^{t+1}}{\Delta z^c_{i,i-1}} \right) \\
\alpha_{2,5} &=& \left(\dfrac{\rho_m}{\Delta t}\right)
+ \left(\dfrac{g_{a,i-\frac{1}{2}}^{t+1} }{\Delta z^c_{i,i-1}} \right)
+ \left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1} }{\Delta z^c_{i+1,i}} \right) \nonumber \\
& & + \frac{g_{lsun,i}^{t+1} \Delta L_{sun,i} + g_{lshd,i}^{t+1} \Delta L_{shd,i}}{\Delta z_i} \\
\alpha_{2,6} &=& -\left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1}}{\Delta z^c_{i+1,i}} \right) \\
\alpha_{2,7} &=& - \frac{s_{sun,i} g_{lsun,i}^{t+1} \Delta L_{sun,i}}{\Delta z_i} \\
\alpha_{2,8} &=& - \frac{s_{shd,i} g_{lshd,i}^{t+1} \Delta L_{shd,i}}{\Delta z_i} \\
\beta_{2} &=& \left(\dfrac{\rho_m}{\Delta t}\right) q_i^{t+1} \nonumber \\
& & + \frac{\left(q_{sat}(T_{lsun,i}^{t+1}) - s_{sun,i} T_{lsun}^{t+1} \right)
g_{lsun,i}^{t+1}\Delta L_{sun,i}}{\Delta z_i} \nonumber \\
& & + \frac{\left(q_{sat}(T_{lshd,i}^{t+1}) - s_{shd,i} T_{lshd}^{t+1} \right)
g_{lshd,i}^{t+1} \Delta L_{shd,i}}{\Delta z_i}
\end{eqnarray}\]
For the top vertical layer \(i = N\), the coefficients \(\alpha_{i=2,*}\) remain same as terms in equation \eqref{eqn_avapor_terms} same except
\[\begin{eqnarray}
\alpha_{2,6} &=& 0\\
\beta_{2} &=& \left(\dfrac{\rho_m}{\Delta t}\right) q_i^{t+1} \nonumber \\
& & + \frac{\left(q_{sat}(T_{lsun,i}^{t+1}) - s_i T_{lsun}^{t+1} \right)
g_{lsun,i}^{t+1}\Delta L_{sun,i}}{\Delta z_i} \nonumber \\
& & + \frac{\left(q_{sat}(T_{lshd,i}^{t+1}) - s_i T_{lshd}^{t+1} \right)
g_{lshd,i}^{t+1} \Delta L_{shd,i}}{\Delta z_i} \nonumber \\
& & + \left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1}}{\Delta z_{i+1,i}} \right) q_{ref}^{n+1}
\end{eqnarray}\]
where \(q_{ref}^{n+1}\) is prescribed atmospheric water vapor pressure.
For soil surface layer \(i=0\), the water vapor balance is given by
\[\begin{eqnarray}
q_0^{n+1} &=&
h_{s0} \left[ q_{sat}(T_0^{n}) + s_0\left( T_0^{n+1} - T_0^n\right)\right] \nonumber \\
-h_{s0} s_0 T_0^{n+1} + q_0^{n+1} &=& h_{s0} \left[ q_{sat}(T_0^{n}) - s_0T_0^n\right]
\end{eqnarray}\]
The non-zero coefficients \(\alpha_{1,*}\) for \(i = 0\) are thus given as
\[\begin{eqnarray}
\alpha_{2,2} &=& -h_{s0} s_0 \\
\alpha_{2,5} &=& 1\\
\beta_{2} &=& h_{s0} \left[ q_{sat}(T_0^{n}) - s_0T_0^n\right]
\end{eqnarray}\]
Sunlit leave temperature
The discretized equation \ref{eqn_mlc_tsun} at an internal vertical layer (i.e. \(0<i<N\)) is
given by
\[\begin{eqnarray}
\frac{c_{\ell,i}}{\Delta t} \left( T_{\ell sun,i}^{t+1} - T_{\ell sun,i}^{t} \right)&=&
\text{Rn}_{sun}
- 2 \left(T_{\ell sun,i}^{t+1} - \theta_i^{t+1}\right) g_{bh,i} \nonumber \\
& & - \lambda \left[ q_{sat, \ell sun,i}^{t+1} - q_i^{t+1}\right] g_{\ell sun,i} \nonumber \\
&=&
\text{Rn}_{sun}
- 2 \left(T_{\ell sun,i}^{t+1} - \theta_i^{t+1}\right) g_{bh,i} \nonumber \\
& &- \lambda \left[ q_{sat, \ell sun,i}^{t} + s_{sun,i} \left( T_{\ell,sun}^{n+1} - T_{\ell, sun}^n \right) - q_i^{t+1}\right] g_{\ell sun,i}
\end{eqnarray}\]
The non-zero coefficients \(\alpha_{i=3,*}\) of equation \eqref{eqn_mlc_matrix} for \(0<i<N\) are thus given as
\[\begin{eqnarray}
\alpha_{3,2} &=& -2 c_p g_{bh,i}^{t+1} \\
\alpha_{3,5} &=& - \lambda g_{lsun,i}^{t+1} \\
\alpha_{3,7} &=& \left( \frac{c_{L,i}}{\Delta t} \right) + 2 c_p g_{bh,i}^{t+1} + \lambda s_i g_{lsun,i}^{t+1} \\
\beta_{3} &=& \text{Rn}_{sun}^{t+1,0} + \left(\dfrac{c_{L,i}}{\Delta t}\right) T_{lsun,i}^{t+1}
- \lambda \left(q_{sat}(T_{lsun,i}^{t+1}) - s_i T_{lsun}^{t+1} \right) g_{lsun,i}^{t+1}
\end{eqnarray}\]
Shaded leave temperature
The discretized equation \ref{eqn_mlc_tshd} at an internal vertical layer (i.e. \(0<i<N\)) is
given by
\[\begin{eqnarray}
\frac{c_{\ell,i}}{\Delta t} \left( T_{\ell shd,i}^{t+1} - T_{\ell shd,i}^{t} \right)&=&
\text{Rn}_{shd}
- 2 \left(T_{\ell shd,i}^{t+1} - \theta_i^{t+1}\right) g_{bh,i} \nonumber \\
& & - \lambda \left[ q_{sat, \ell shd,i}^{t+1} - q_i^{t+1}\right] g_{\ell shd,i} \nonumber \\
&=&
\text{Rn}_{shd}
- 2 \left(T_{\ell shd,i}^{t+1} - \theta_i^{t+1}\right) g_{bh,i} \nonumber \\
& & - \lambda \left[ q_{sat, \ell shd,i}^{t} + s_{shd,i} \left( T_{\ell,shd}^{n+1} - T_{\ell, shd}^n \right) - q_i^{t+1}\right] g_{\ell shd,i}
\end{eqnarray}\]
The non-zero coefficients \(\alpha_{i=4,*}\) of equation \eqref{eqn_mlc_matrix} for \(0<i<N\) are thus given as
\[\begin{eqnarray}
\alpha_{4,2} &=& -2 c_p g_{bh,i}^{t+1} \\
\alpha_{4,5} &=& - \lambda g_{lshd,i}^{t+1} \\
\alpha_{4,8} &=& \left( \frac{c_{L,i}}{\Delta t} \right) + 2 c_p g_{bh,i}^{t+1} + \lambda s_i g_{lshd,i}^{t+1} \\
\beta_{4} &=& \text{Rn}_{shd}^{t+1,0} + \left(\dfrac{c_{L,i}}{\Delta t}\right) T_{lshd,i}^{t+1}
- \lambda \left(q_{sat}(T_{lshd,i}^{t+1}) - s_i T_{lshd}^{t+1} \right) g_{lshd,i}^{t+1}
\end{eqnarray}\]