Skip to content

Multi layer canopy

Governing equations

The equations for the time evolution of air temperature, \(\theta\), and water vapor, \(q\), sunlit leaf temperature, \(T_{\ell sun}\), and shaded leaf temperature, \(T_{\ell shd}\), in a MLCM is given by

\[\begin{eqnarray} \rho_mc_p \left(\frac{\partial\theta}{\partial t}\right) &=& c_p \nabla \cdot \left( g_{a} \nabla \theta \right) + \frac{Q_{\theta sun,i} \Delta L_{sun,i}}{\Delta z_i} + \frac{Q_{\theta shd,i} \Delta L_{shd,i}}{\Delta z_i} \label{eqn_mlc_tair} + S_\theta \\ \rho_m \left( \frac{\partial q}{\partial t} \right) &=& \nabla \cdot \left( g_{a} \nabla q \right) + \frac{Q_{qsun,i} \Delta L_{sun,i}}{\Delta z_i} + \frac{Q_{qshd,i} \Delta L_{shd,i}}{\Delta z_i} \label{eqn_mlc_qair} + S_q \\ c_{\ell} \left( \frac{\partial T_{\ell sun}}{\partial t} \right) &=& \text{R}_{n,sun} - Q_{\theta sun} - \lambda Q_{qsun} + S_{\ell sun} \label{eqn_mlc_tsun} \\ c_{\ell} \left( \frac{\partial T_{\ell shd}}{\partial t} \right) &=& \text{R}_{n,shd} - Q_{\theta shd} - \lambda Q_{qshd} + S_{\ell shd} \label{eqn_mlc_tshd} \end{eqnarray}\]

where \(\rho_m\) is density of air, \(\lambda\) is latent heat of vaporization for water, \(c_p\) is specific heat capacity of air, \(c_{\ell}\) is specific heat capacity of leaf, \(g_{a}\) is atmospheric conductance, \(\Delta L_{sun}\) is the leaf area index of the sunlit leaf, \(\Delta L_{shd}\) is the leaf area index of the shaded leaf, \(Q_{\theta sun}\) is the heat source from the sunlit leaf to the canopy air, \(Q_{\theta shd}\) is the heat source from the shaded leaf to the canopy air, \(Q_{qsun}\) is the water vapor source from the sunlit leaf the canopy air, \(Q_{qsun}\) is the water vapor source from the shaded leaf the canopy air, \(\text{Rn}_{sun}\) is the net shortwave and longwave radiation absorbed by the sunlit leaf, and \(\text{Rn}_{shd}\) is the net shortwave and longwave radiation absorbed by the shaded leaf.

The source of heat and water vapor for sunlit and shaded leaves at the \(i\)-th layer are given by

\[\begin{eqnarray} Q_{\theta sun} &=& 2c_p(T_{\ell sun} - \theta_i)g_{bh} \\ Q_{\theta shd} &=& 2c_p(T_{\ell shd} - \theta_i)g_{bh}\\ Q_{qsun} &=& (q_{sat}(T_{\ell sun}) - q_i) g_{\ell sun} \\ Q_{qshd} &=& (q_{sat}(T_{\ell shd}) - q_i) g_{\ell shd} \end{eqnarray}\]

where \(g_{bh,i}\) is the boundary layer conductance for heat, \(g_{bw,i}\) is the boundary layer conductance for water vapor, \(g_{\ell sun,i}\) is the total leaf conductance for the sunlit leaf, and \(g_{\ell shd,i}\) is the total leaf conductance for the shaded leaf. The leaf conductances are given as

\[\begin{eqnarray} g_{\ell sun} &=& \left(\frac{1}{g_{bw}^{-1} + g_{sw,sun}^{-1}}\right) f_{dry} + g_{bw} f_{wet}\\ g_{\ell shd} &=& \left(\frac{1}{g_{bw}^{-1} + g_{sw,shd}^{-1}}\right) f_{dry} + g_{bw} f_{wet} \end{eqnarray}\]

where \(g_{sw,sun}\) is the stomatal conductance for the sunlit leaf, and \(g_{sw,shd}\) is the stomatal conductance for the shaded leaf.

The net radiation absorbed by sunlit and shaded leaf are given by

\[\begin{eqnarray} \label{eqn_rn} \text{Rn}_{sun} &=& \vec{I}^{d}_{sun} + \vec{I}^{b}_{sun} + \vec{L}_{sun}\\ \text{Rn}_{shd} &=& \vec{I}^{d}_{shd} + \vec{L}_{shd} \label{eqn:net_} \end{eqnarray}\]

where \(\vec{I}^{d}\) is absorbed diffuse radiation, \(\vec{I}^{b}\) is absorbed beam radiation, and \(\vec{L}\) is absorbed longwave radiation. The finite volume and implicit time discretization of equation \eqref{eqn_mlc_tair}-\eqref{eqn_mlc_tshd} leads to the following equations for the \(i\)-th layer can be written as

\[\begin{eqnarray} \begin{bmatrix} \alpha_{1,1} & {\alpha_{1,2}} & {\alpha_{1,3}} & \alpha_{1,4} & \alpha_{1,5} & \alpha_{0,6} & {\alpha_{1,7}} & {\alpha_{1,8}}\\ 0 & 0 & 0 & {\alpha_{2,4}} & {\alpha_{2,5}} & {\alpha_{2,6}} & {\alpha_{2,7}} & {\alpha_{2,8}}\\ 0 & {\alpha_{3,2}} & 0 & 0 & {\alpha_{3,5}} & 0 & {\alpha_{3,7}} & 0 \\ 0 & {\alpha_{4,2}} & 0 & 0 & {\alpha_{4,5}} & 0 & 0 & {\alpha_{4,8}}\\ \end{bmatrix} \begin{bmatrix} \theta_{i-1}^{t+1} \\ \theta_{i }^{t+1} \\ \theta_{i+1}^{t+1} \\ q_{i-1}^{t+1} \\ q_{i }^{t+1} \\ q_{i+1}^{t+1} \\ T_{lsun,i}^{t+1} \\ T_{lshd,i}^{t+1} \end{bmatrix} = \begin{bmatrix} \beta_{1} \\ \beta_{2} \\ \beta_{3} \\ \beta_{4} \end{bmatrix} \label{eqn_mlc_matrix} \end{eqnarray}\]

Air temperature equation

The discretized equation \ref{eqn_mlc_tair} at an internal vertical layer (i.e. \(0<i<N\))

\[\begin{eqnarray} \frac{\rho_m }{\Delta t} \left(\theta_i^{t+1} - \theta_i^{t}\right) &=& + g_{a,i+\frac{1}{2}} \left(\frac{ {\theta_{i+1}^{t+1} - \theta_{i }^{t+1}} } {z^c_{i+1} - z^c_{i }}\right) - g_{a,i-\frac{1}{2}}\left(\frac{ {\theta_{i }^{t+1} - \theta_{i-1}^{t+1}}}{ z^c_{i } - z^c_{i-1}} \right) \nonumber \\ & & + 2 \left(T_{\ell sun,i}^{t+1} - \theta_i^{t+1}\right) \left( \frac{g_{bh,i}\Delta L_{sun,i}}{\Delta z_i} \right) \nonumber \\ & & + 2 \left(T_{\ell shd,i}^{t+1} - \theta_i^{t+1}\right) \left( \frac{g_{bh,i}\Delta L_{shd,i}}{\Delta z_i} \right) \end{eqnarray}\]

The non-zero coefficients \(\alpha_{i=1,*}\) of equation \eqref{eqn_mlc_matrix} for \(0<i<N\) are thus given as

\[\begin{eqnarray} \label{eqn_atemp_terms} \alpha_{1,1} &=& -\left(\dfrac{g_{a,i-\frac{1}{2}}^{t+1}}{\Delta z^c_{i,i-1}} \right) \\ \alpha_{1,2} &=& \left(\dfrac{\rho_m}{\Delta t}\right) + \left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1} }{\Delta z^c_{i+1,i}} \right) + \left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1} }{\Delta z^c_{i+1,i}} \right) \nonumber \\ & & + \frac{2 g_{bh,i}^{t+1} \left(\Delta L_{sun,i} + \Delta L_{shd,i}\right)}{\Delta z_i} \\ \alpha_{1,3} &=& -\left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1}}{\Delta z^c_{i+1,i}} \right)\\ \alpha_{1,7} &=& - \frac{2 g_{bh,i}^{t+1} \Delta L_{sun,i}}{\Delta z_i}\\ \alpha_{1,8} &=& - \frac{2 g_{bh,i}^{t+1} \Delta L_{shd,i}}{\Delta z_i} \\ \beta_{1} &=& \left(\dfrac{\rho_m}{\Delta t}\right) \theta_i^{t+1} \end{eqnarray}\]

For the top vertical layer \(i = N\), the coefficients \(\alpha_{i=1,*}\) remain same as terms in equation \eqref{eqn_atemp_terms} same except

\[\begin{eqnarray} \label{eqn_atemp_terms_top} \beta_{1} &=& \left(\dfrac{\rho_m}{\Delta t}\right) \theta_i^{t+1} + \left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1}}{\Delta z^c_{i+1,i}} \right) \theta_{ref}^{t+1} \end{eqnarray}\]

where \(\theta_{ref}^{n+1}\) is prescribed atmospheric temperature.

For \(i = 0\), the energy balance for the soil surface, \(\text{Rn}_0\), is given by

\[\begin{eqnarray} \label{eqn_soil_bc_air_heat} \text{Rn}_0 &=& c_p(T_0^{n+1} - \theta_1^{n+1})g_{a,0} \nonumber \\ & & + \lambda \left\{ h_{s0} q_{sat}(T_0^{n+1}) - q_1^{n+1} \right\}g_{s0} \nonumber \\ & & + \frac{\kappa_{1}}{\Delta z_{1/2}} \left( T_0^{n+1} - T_{-1}^n\right) \nonumber \\ &=& c_p(T_0^{n+1} - \theta_{1}^{n+1})g_{a,0} \nonumber \\ & & + \lambda \left\{ h_{s0} \left[ q_{sat}(T_0^{n}) + s_0\left( T_0^{n+1} - T_0^n\right)\right] - q_1^{n+1} \right\}g_{s0}\nonumber \\ & & + \frac{\kappa_{1}}{\Delta z_{1/2}} \left( T_0^{n+1} - T_{-1}^n\right) \end{eqnarray}\]

where \(\theta_0^{n+1} = T_0^{n+1}\) is the soil surface temperature, \(T_{-1}^{n}\) is the soil temperature of the first soil layer, and \(z_{1/2}\) is the distance between the soil surface and centroid of first soil layer. The non-zero coefficients \(\alpha_{1,*}\) for \(i = 0\) are thus given as

\[\begin{eqnarray} \label{eqn_atemp_terms_soil} \alpha_{1,2} &=& \left( c_p g_{a,0} + \lambda h_{s0} g_{s0} s_{0} + \frac{\kappa_{1}}{\Delta z_{1/2}} \right) \\ \alpha_{1,3} &=& - c_p g_{a,0} \\ \alpha_{1,6} &=& - \lambda g_{s,0} \\ \beta_{1} &=& \text{Rn}_0 - \lambda h_{s0} \left[ q_{sat}(T_0^{n}) - s_0T_0^n\right] g_{s0} + \frac{\kappa_{1}}{\Delta z_{1/2}} T_{-1}^n \end{eqnarray}\]

Air vapor pressure equation

The discretized equation \ref{eqn_mlc_qair} at an internal vertical layer (i.e. \(0<i<N\))

\[\begin{eqnarray} \frac{\rho_m}{\Delta t} \left(q_i^{t+1} - q_i^t \right) &=& + g_{a,i+\frac{1}{2}} \left(\frac{ {q_{i+1}^{t+1} - q_{i }^{t+1}} } {z^c_{i+1} - z^c_{i }}\right) - g_{a,i-\frac{1}{2}}\left(\frac{ {q_{i }^{t+1} - q_{i-1}^{t+1}}}{ z^c_{i } - z^c_{i+1}} \right) \nonumber \\ & & + \left[q_{sat, \ell sun,i}^{t+1} - q_i^{t+1}\right] \left( \frac{ g_{\ell sun,i}\Delta L_{sun,i}} {\Delta z_i} \right)\nonumber \\ & & + \left[q_{sat, \ell sha,i}^{t+1} - q_i^{t+1}\right] \left( \frac{ g_{\ell sun,i}\Delta L_{sun,i}} {\Delta z_i} \right) \nonumber \\ &=& + g_{a,i+\frac{1}{2}} \left(\frac{ {q_{i+1}^{t+1} - q_{i }^{t+1}} } {z^c_{i+1} - z^c_{i }}\right) - g_{a,i-\frac{1}{2}}\left(\frac{ {q_{i }^{t+1} - q_{i-1}^{t+1}}}{ z^c_{i } - z^c_{i+1}} \right) \nonumber \\ & & + \left[ q_{sat, \ell sun,i}^{t} + s_{sun,i} \left( T_{\ell,sun}^{n+1} - T_{\ell, sun}^n \right) - q_i^{t+1}\right] \left( \frac{ g_{\ell sun,i}\Delta L_{sun,i}} {\Delta z_i} \right)\nonumber \\ & & + \left[ q_{sat, \ell sha,i}^{t} + s_{sha,i} \left( T_{\ell,sha}^{n+1} - T_{\ell, sha}^n \right) - q_i^{t+1}\right] \left( \frac{ g_{\ell sun,i}\Delta L_{sun,i}} {\Delta z_i} \right) \end{eqnarray}\]

The non-zero coefficients \(\alpha_{i=2,*}\) of equation \eqref{eqn_mlc_matrix} for \(0<i<N\) are thus given as

\[\begin{eqnarray} \label{eqn_avapor_terms} \alpha_{2,4} &=& -\left(\dfrac{g_{a,i-\frac{1}{2}}^{t+1}}{\Delta z^c_{i,i-1}} \right) \\ \alpha_{2,5} &=& \left(\dfrac{\rho_m}{\Delta t}\right) + \left(\dfrac{g_{a,i-\frac{1}{2}}^{t+1} }{\Delta z^c_{i,i-1}} \right) + \left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1} }{\Delta z^c_{i+1,i}} \right) \nonumber \\ & & + \frac{g_{lsun,i}^{t+1} \Delta L_{sun,i} + g_{lshd,i}^{t+1} \Delta L_{shd,i}}{\Delta z_i} \\ \alpha_{2,6} &=& -\left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1}}{\Delta z^c_{i+1,i}} \right) \\ \alpha_{2,7} &=& - \frac{s_{sun,i} g_{lsun,i}^{t+1} \Delta L_{sun,i}}{\Delta z_i} \\ \alpha_{2,8} &=& - \frac{s_{shd,i} g_{lshd,i}^{t+1} \Delta L_{shd,i}}{\Delta z_i} \\ \beta_{2} &=& \left(\dfrac{\rho_m}{\Delta t}\right) q_i^{t+1} \nonumber \\ & & + \frac{\left(q_{sat}(T_{lsun,i}^{t+1}) - s_{sun,i} T_{lsun}^{t+1} \right) g_{lsun,i}^{t+1}\Delta L_{sun,i}}{\Delta z_i} \nonumber \\ & & + \frac{\left(q_{sat}(T_{lshd,i}^{t+1}) - s_{shd,i} T_{lshd}^{t+1} \right) g_{lshd,i}^{t+1} \Delta L_{shd,i}}{\Delta z_i} \end{eqnarray}\]

For the top vertical layer \(i = N\), the coefficients \(\alpha_{i=2,*}\) remain same as terms in equation \eqref{eqn_avapor_terms} same except

\[\begin{eqnarray} \alpha_{2,6} &=& 0\\ \beta_{2} &=& \left(\dfrac{\rho_m}{\Delta t}\right) q_i^{t+1} \nonumber \\ & & + \frac{\left(q_{sat}(T_{lsun,i}^{t+1}) - s_i T_{lsun}^{t+1} \right) g_{lsun,i}^{t+1}\Delta L_{sun,i}}{\Delta z_i} \nonumber \\ & & + \frac{\left(q_{sat}(T_{lshd,i}^{t+1}) - s_i T_{lshd}^{t+1} \right) g_{lshd,i}^{t+1} \Delta L_{shd,i}}{\Delta z_i} \nonumber \\ & & + \left(\dfrac{g_{a,i+\frac{1}{2}}^{t+1}}{\Delta z_{i+1,i}} \right) q_{ref}^{n+1} \end{eqnarray}\]

where \(q_{ref}^{n+1}\) is prescribed atmospheric water vapor pressure.

For soil surface layer \(i=0\), the water vapor balance is given by

\[\begin{eqnarray} q_0^{n+1} &=& h_{s0} \left[ q_{sat}(T_0^{n}) + s_0\left( T_0^{n+1} - T_0^n\right)\right] \nonumber \\ -h_{s0} s_0 T_0^{n+1} + q_0^{n+1} &=& h_{s0} \left[ q_{sat}(T_0^{n}) - s_0T_0^n\right] \end{eqnarray}\]

The non-zero coefficients \(\alpha_{1,*}\) for \(i = 0\) are thus given as

\[\begin{eqnarray} \alpha_{2,2} &=& -h_{s0} s_0 \\ \alpha_{2,5} &=& 1\\ \beta_{2} &=& h_{s0} \left[ q_{sat}(T_0^{n}) - s_0T_0^n\right] \end{eqnarray}\]

Sunlit leave temperature

The discretized equation \ref{eqn_mlc_tsun} at an internal vertical layer (i.e. \(0<i<N\)) is given by

\[\begin{eqnarray} \frac{c_{\ell,i}}{\Delta t} \left( T_{\ell sun,i}^{t+1} - T_{\ell sun,i}^{t} \right)&=& \text{Rn}_{sun} - 2 \left(T_{\ell sun,i}^{t+1} - \theta_i^{t+1}\right) g_{bh,i} \nonumber \\ & & - \lambda \left[ q_{sat, \ell sun,i}^{t+1} - q_i^{t+1}\right] g_{\ell sun,i} \nonumber \\ &=& \text{Rn}_{sun} - 2 \left(T_{\ell sun,i}^{t+1} - \theta_i^{t+1}\right) g_{bh,i} \nonumber \\ & &- \lambda \left[ q_{sat, \ell sun,i}^{t} + s_{sun,i} \left( T_{\ell,sun}^{n+1} - T_{\ell, sun}^n \right) - q_i^{t+1}\right] g_{\ell sun,i} \end{eqnarray}\]

The non-zero coefficients \(\alpha_{i=3,*}\) of equation \eqref{eqn_mlc_matrix} for \(0<i<N\) are thus given as

\[\begin{eqnarray} \alpha_{3,2} &=& -2 c_p g_{bh,i}^{t+1} \\ \alpha_{3,5} &=& - \lambda g_{lsun,i}^{t+1} \\ \alpha_{3,7} &=& \left( \frac{c_{L,i}}{\Delta t} \right) + 2 c_p g_{bh,i}^{t+1} + \lambda s_i g_{lsun,i}^{t+1} \\ \beta_{3} &=& \text{Rn}_{sun}^{t+1,0} + \left(\dfrac{c_{L,i}}{\Delta t}\right) T_{lsun,i}^{t+1} - \lambda \left(q_{sat}(T_{lsun,i}^{t+1}) - s_i T_{lsun}^{t+1} \right) g_{lsun,i}^{t+1} \end{eqnarray}\]

Shaded leave temperature

The discretized equation \ref{eqn_mlc_tshd} at an internal vertical layer (i.e. \(0<i<N\)) is given by

\[\begin{eqnarray} \frac{c_{\ell,i}}{\Delta t} \left( T_{\ell shd,i}^{t+1} - T_{\ell shd,i}^{t} \right)&=& \text{Rn}_{shd} - 2 \left(T_{\ell shd,i}^{t+1} - \theta_i^{t+1}\right) g_{bh,i} \nonumber \\ & & - \lambda \left[ q_{sat, \ell shd,i}^{t+1} - q_i^{t+1}\right] g_{\ell shd,i} \nonumber \\ &=& \text{Rn}_{shd} - 2 \left(T_{\ell shd,i}^{t+1} - \theta_i^{t+1}\right) g_{bh,i} \nonumber \\ & & - \lambda \left[ q_{sat, \ell shd,i}^{t} + s_{shd,i} \left( T_{\ell,shd}^{n+1} - T_{\ell, shd}^n \right) - q_i^{t+1}\right] g_{\ell shd,i} \end{eqnarray}\]

The non-zero coefficients \(\alpha_{i=4,*}\) of equation \eqref{eqn_mlc_matrix} for \(0<i<N\) are thus given as

\[\begin{eqnarray} \alpha_{4,2} &=& -2 c_p g_{bh,i}^{t+1} \\ \alpha_{4,5} &=& - \lambda g_{lshd,i}^{t+1} \\ \alpha_{4,8} &=& \left( \frac{c_{L,i}}{\Delta t} \right) + 2 c_p g_{bh,i}^{t+1} + \lambda s_i g_{lshd,i}^{t+1} \\ \beta_{4} &=& \text{Rn}_{shd}^{t+1,0} + \left(\dfrac{c_{L,i}}{\Delta t}\right) T_{lshd,i}^{t+1} - \lambda \left(q_{sat}(T_{lshd,i}^{t+1}) - s_i T_{lshd}^{t+1} \right) g_{lshd,i}^{t+1} \end{eqnarray}\]